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NiftyPET is a software platform and a Python namespace package encompassing sub-packages for high-throughput
PET image reconstruction, manipulation, processing and analysis with high quantitative accuracy and precision. One
of its key applications is brain imaging in dementia with the use of amyloid tracers. See below for the description of
the above amyloid PET image reconstructed using NiftyPET, superimposed on the MR T1 weighted image*0.

NiftyPET includes two packages:

• nimpa: https://github.com/NiftyPET/NIMPA (neuro-image manipulation, processing and analysis)

• nipet: https://github.com/NiftyPET/NIPET (quantitative PET neuroimaging)

The core routines are written in CUDA C and embedded in Python C extensions to enable user-friendly and high-
throughput executions on NVIDIA graphics processing units (GPU). The scientific aspects of this software platform
are covered in two open-access publications:

• NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging
and Analysis Neuroinformatics (2018) 16:95. https://doi.org/10.1007/s12021-017-9352-y

• Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis Physics in
Medicine & Biology (2016). https://doi.org/10.1088/0031-9155/61/13/N322

An example application of NiftyPET in the development of novel image reconstruction:

• Faster PET Reconstruction with Non-Smooth Priors by Randomization and Preconditioning Physics in
Medicine & Biology (2019). https://doi.org/10.1088/1361-6560/ab3d07

Although, NiftyPET is dedicated to high-throughput image reconstruction and analysis of brain images, it can equally
well be used for whole body imaging. Strong emphasis is put on the data, which are acquired using positron emission
tomography (PET) and magnetic resonance (MR), especially using the hybrid and simultaneous PET/MR scanners.

This software platform covers the entire processing pipeline, from the raw list-mode (LM) PET data through to the final
image statistic of interest (e.g., regional SUV), including LM bootstrapping and multiple independent reconstructions
to facilitate voxel-wise estimation of uncertainties.

0 The above dynamic transaxial and coronal images show the activity of 18F-florbetapir during the one-hour dynamic acquisition. Note that the
signal in the brain white matter dominates over the signal in the grey matter towards the end of the acquisition, which is a typical presentation of a
negative amyloid beta (Abeta) scan.
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CHAPTER 1

Introduction

NiftyPET is an open source software solution for standalone and high-throughput PET image reconstruction and
analysis. The key computational routines are written in CUDA C for fast and efficient processing on NVIDIA GPU
devices. The routines are then embedded in Python C extensions to be readily available for high level programming in
Python*0.

1.1 Aim

The purpose of this software platform is to enable rapid processing of raw data as wells as image data for fully
controlled quantitative PET image reconstruction and analysis. NiftyPET includes two stand-alone and independent
Python packages: nipet and nimpa, which are dedicated to high-throughput image reconstruction and analysis.
Strong emphasis is put on the data, which are acquired using positron emission tomography (PET) and magnetic
resonance (MR), especially the hybrid and simultaneous PET/MR scanners.

This documentation intends to present all the processing chains required not only for generating a final PET image
from raw data acquired on a PET/MR scanner, but also further process the image to obtain a final statistic, such as
global or regional SUV (standardised uptake value) or SUVr (SUV ratio).

The nipet (neuro-imaging PET) Python package contains all the routines needed for robust quantitative image
reconstruction from raw data with added quality control of any processing segments, e.g., photon scatter or randoms
corrections. The raw data typically includes large list-mode (LM) data (usually taking up GBs), data for detector
normalisation, and data for attenuation correction, i.e., the attenuation map, also called the 𝜇-map.

The nimpa (neuro-image manipulation, processing and analysis) package contains all the routines for image in-
put/output, image trimming and up-sampling for regional signal extraction (e.g. from a region of interest–ROI), image
registration, and importantly, for partial volume correction (PVC).

The key aspect of nipet is the fast LM processing for efficient uncertainty estimation of statistic based on image or
projection data. Significant emphasis in placed on reconstruction for scanners with extended axial field of view (FOV),
such as the latest PET/MR systems, e.g., the Siemens Biograph mMR or the GE Signa†0.

The processing chains include:

0 Python 2.7 is supported in version 1.0, while Python 3 support is added in version 2.0+ of NiftyPET
0 Currently the GE Signa is not yet fully supported in NiftyPET.
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1. list-mode data processing;

2. accurate attenuation coefficient map generation (with pseudo-CT for PET/MR);

3. detector normalisation with dead time correction;

4. exact forward and back projection between sinogram and image space;

5. estimation of reduced-variance random events;

6. high accuracy fully 3D estimation of scatter events;

7. voxel-based partial volume correction;

8. region- and voxel-level image analysis.

Due to its speed and additional functionalities, NiftyPET allows practical and efficient generation of multiple bootstrap
realisations of raw and image datasets, being processed within arbitrarily complex reconstruction and analysis chains
[5][6]. Based on these datasets, distributions of any statistic can be formed indicating the uncertainty of any given
parameter of interest, for example, the regional SUVr in amyloid brain imaging.

1.2 Software infrastructure

For demonstration purposes, all the processing stages presented in the above figure use an amyloid brain scan acquired
on the Siemens Biograph mMR. The participant was taking part in “Insight 46”–a neuroscience sub-study of the
Medical Research Council National Survey of Health and Development [4].

The input data include the attenuation coefficient maps (𝜇-maps) of the hardware and subject (stage A), normalisation
component data (stage B) and the list-mode data (stage C). Optionally, T1 and/or T2 weighted MR images are provided
for brain parcellation used in reconstruction and analysis stage D and partial volume correction (PVC) stage F. The
T1w image is also used for generating an accurate subject’s 𝜇-map.

In stage B the normalisation component data (relatively small file) is used to generate single factors for each sinogram
bin, with the use of bucket singles obtained from list-mode (LM) processing in stage C. The LM processing stage C
generates prompt and delayeds sinograms and fan sums, which are used for estimating reduced-variance randoms for
each sinogram bin.

Great emphasis was put on the quantitative image reconstruction and analysis in stages D-H (for more details see [5]):

• forward and back projectors used for image reconstruction (stage D); the attenuation factors are generated with
the forward projector.

• fully 3D estimation of scatter events (stage E), with high resolution ray tracing in image and projection space;
the estimation is based on voxel-driven scatter model (VSM) and is coupled with image reconstruction, i.e., the
scatter is updated every time a better image estimation of the radiotracer distribution is available.

• voxel-wise partial volume correction using MRI brain parcellations (stage F), based on the iterative Yang method
and given point spread function (PSF) of the whole imaging system (including the hardware and the reconstruc-
tion algorithm);

• kinetic analysis using dynamic multi-frame PET data (stage G);

• voxel-wise uncertainty estimation based on efficient generation of bootstrap LM data replicates (stage H).

4 Chapter 1. Introduction
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Fig. 1.1: Infrastructure for standalone PET image reconstruction and analysis of PET/MR brain data using amyloid
PET tracer. The processing stages (A-H) are explained below. The asterisk () indicates external software packages.

1.2. Software infrastructure 5
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CHAPTER 2

Installation

Note: Quick note on ways of installation

Requirements:

• An NVIDIA GPU with the CUDA SDK/Toolkit (including drivers) installed

• Git

• Python 3.6 or greater (e.g. via Anaconda or Miniconda)

Installation:

pip install niftypet

This will install all relevant packages, including nipet and nimpa.

Tip: Installation (advanced):

git clone https://github.com/NiftyPET/NIMPA.git
git clone https://github.com/NiftyPET/NIPET.git

export PATHTOOLS=$HOME/NiftyPET_tools
export HMUDIR=$HOME/mmr_hardwareumaps

conda install -c conda-forge python=3 \
numpy scipy scikit-image matplotlib ipykernel ipywidgets

pip install --verbose -e ./NIMPA
pip install --verbose -e ./NIPET

This will install an “editable” distribution at the source locations for both nimpa and nipet (allowing easy modifi-
cation and/or updating using git pull).

Detailed steps for installation are given below.
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NiftyPET is a Python namespace package, primarily encompassing the two packages nimpa and nipet. Currently,
these are available for Python 3.6 or greater for Linux and Windows systems. It has been deployed and tested on
CentOS 6.8 and 7, Ubuntu 14.04, 16.04, 18.04 and 20.04, as well as Windows 10 (limited) – including Python C
extensions for the core CUDA routines. Linux systems are recommended due to their robustness and stability (support
for Windows is comparatively limited).

2.1 Dependencies

2.1.1 Hardware

• GPU device: One or more GPU devices from NVIDIA with a CUDA compute capability of at least 3.5. It is also
recommended to have at least 5 GB of GPU memory. The following devices have been tested with NiftyPET:

– NVIDIA Tesla K20/K40/V100

– NVIDIA Titan Xp/RTX

– NVIDIA Quadro P4000/P6000

– NVIDIA GeForce GTX 1060/1080/1080 Ti/1080 Max-Q

• CPU host: The GPU device can be accessed by a CPU host, with a reasonable computing power for some other
image processing routines (e.g. image registration, etc.). It is recommended to have at least 16 GB of RAM,
although we have managed to run dynamic reconstruction using old PC workstations with as little as 11 GB of
RAM.

2.1.2 Software

NitfyPET installation needs the following software pre-installed:

• C/C++ compiler

GCC and Clang are commonly using on Linux systems, and Visual Studio on Windows.

– Ubuntu Linux:

apt-get install build-essential

– CentOS Linux:

yum group install "Development Tools"

– Windows: Visual Studio

• CUDA GPU & Software

The CUDA SDK/Toolkit (click the link to download) is a parallel computing platform and programming model.
This includes the CUDA compiler (nvcc) and runtime API. For extra guidance, consult the CUDA documen-
tation.

Tip: In CentOS, it is necessary to install DKMS (Dynamic Kernel Module Support). Download from here and
install as follows:

rpm -ivh epel-release-latest-7.noarch.rpm
yum -y install dkms
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Tip: Make sure that CUDA is installed with appropriate paths to CUDA resources setup, e.g. on Linux systems:

export PATH="/usr/local/cuda/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"

This can be added to ~/.profile or ~/.bashrc files. For more details see http://docs.nvidia.com/cuda/
cuda-installation-guide-linux/index.html#post-installation-actions.

• Git

Git is a version control system used for downloading NiftyPET and other necessary tools, i.e.
NiftyReg and dcm2niix. For more details on installing git see https://git-scm.com/book/en/v2/
Getting-Started-Installing-Git.

On Linux systems it can be installed as follows:

– Ubuntu Linux:

apt-get install git

– CentOS Linux:

yum install git

– Windows: Git

• Python 3.6 or greater

A free high-level programming language, through which all the GPU routines are available for the user. The
easiest way to run NiftyPET in Python is by using the Anaconda or Miniconda distributions.

Tip: Optional Python packages

Jupyter Notebook (notebook) is a useful development interface.

Additionally, when using Anacoda or Minconda, it is recommended to use conda to install some dependencies
rather than rely on NiftyPET to automatically install them via pip.

# useful mathematical & plotting libraries
conda install -c conda-forge python=3 numpy scipy scikit-image matplotlib nibabel
→˓pydicom
# jupyter noebook support
conda install -c conda-forge python=3 ipykernel ipywidgets

2.2 NiftyPET installation

Tip: To avoid prompts during installation, specify configuration directories in advance:

export PATHTOOLS=$HOME/NiftyPET_tools
export HMUDIR=$HOME/mmr_hardwareumaps

2.2. NiftyPET installation 9
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2.2.1 Using pip

To install the entire suite of packages, use:

pip install niftypet

Tip: In case this fails, make sure Python and NVIDIA’s CUDA compiler are available on the system path. On Linux,
for example, these commands should all succeed:

python3 --version
g++ --version
nvcc --version
git --version

If all of the above commands succeed yet the installation fails, open a support request by posting the versions and error
output to https://github.com/NiftyPET/NiftyPET/issues/new.

Tip: Instead of installing everything, follow these steps to install individual components separately.

• nimpa

pip install --verbose nimpa

• nipet

The core of NiftyPET image reconstruction.

pip install --verbose nipet

This will also install nimpa if not already present.

2.2.2 From source

The source code of full version of nimpa and nipet packages can be downloaded to a specific folder using git as
follows:

git clone https://github.com/NiftyPET/NIMPA.git
git clone https://github.com/NiftyPET/NIPET.git

After a successful download, navigate to folder nimpa and run inside one of the following:

1) pip install --verbose .

2) pip install --verbose -e .

The last option with the -e makes the installation “editable”, allowing the user to modify the source code themselves
or by pulling newer versions from git using git pull.

Identically for nipet, run one of the following:

1) pip install --verbose .

2) pip install --verbose -e .

10 Chapter 2. Installation
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The installation will download and call on cmake, which will run automatically and generate Ninja files, and then run
ninja to build all the CUDA C routines and Python C extensions. Following this, the compiled Python modules will
be installed into the specific Python package location.

2.2.3 Third party software installed with NiftyPET

NiftyPET will automatically install additional third party software (used for capabilities such as image registration and
conversion). NiftyReg and dcm2niix will be installed in the NiftyPET_tools folder specified during the installation
process:

• dcm2niix: conversion of DICOM images to NIfTI images (v1.0.20171204). If for some reason the automatic
installation fails (e.g., due to a problem with dependencies), try to download the source code from https://
github.com/rordenlab/dcm2niix and compile it, or use the pre-complied version with current release available at
https://github.com/rordenlab/dcm2niix/releases/.

• NiftyReg: image registration and resampling tool. The stable version (16 Nov 2017) is fetched and installed
automatically from https://github.com/KCL-BMEIS/niftyreg. Some details for a manual install can be found at
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg_install (can be outdated).

2.2.4 Conda environments

One of the advantages of using conda is the possibility of having separate environments for different versions of
Python and/or packages installed in them. Thus conda environments enable the user to set up NiftyPET differently
for various applications (e.g., different image resolution, radio-pharmaceutical-optimised attenuation and/or scatter
correction, etc.). Below is an example of installation of NiftyPET into environment called niftypet.

Create environment called, for example, niftypet, by running this command:

conda create --name niftypet

Activate the conda environment:

conda activate niftypet

Note: On Windows, this may be simply activate niftypet, and on Linux source activate niftypet.

Tip: It may be quicker to also install additional required packages with conda (rather than relying on pip to
automatically do this during installation of niftypet):

# useful mathematical & plotting libraries
conda install -c conda-forge python=3 numpy scipy scikit-image matplotlib nibabel
→˓pydicom
# jupyter noebook support
conda install -c conda-forge python=3 ipykernel ipywidgets

NiftyPET can now be installed as described above in NiftyPET installation, while making sure that the conda envi-
ronment is active.

Warning: Make sure to conda activate niftypetwhenever opening a new terminal to ensure the correct
environment is active.

2.2. NiftyPET installation 11
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2.2.5 Jupyter Notebook

Jupyter Notebooks are useful for sharing and replicating image reconstruction methods written in Python. They
allow introspection, plotting and sharing of any intermediate results (e.g. sinograms and images generated during the
reconstruction pipeline) or any end results. It is easiest to use conda to install Jupyter in the base environment in
order to automatically pick up kernels for all other enviroments (conda install --name base notebook).
See http://jupyter.readthedocs.io/en/latest/tryjupyter.html for more details and http://jupyter.readthedocs.io/en/latest/
install.html for a manual installation.

Warning: When using Jupyter, make sure to select the correct kernel (corresponding to the desired conda envi-
ronment name) within the notebook.

2.3 Post-installation checks

2.3.1 Configuration

A .niftypet folder is created during the installation (in $HOME or %APPDATA%). Additional subfolders may be
present corresponding to the conda environment name. Configuration information is stored in resources.py
within this folder.

Warning: It is recommended to rerun pip install rather than manually editing paths and device properties
in resources.py.

Default CUDA device

The default CUDA device used for GPU calculations is chosen during the installation together with the corresponding
optimal nvcc (CUDA compiler) flags. For example, for the NVIDIA Titan Xp with compute capability of 6.1,
resources.py will have a section showing:

# DO NOT MODIFY BELOW--DONE AUTOMATICALLY
### start GPU properties ###
DEV_ID = 0
CC_ARCH = '-gencode=arch=compute_61,code=compute_61;'
### stop GPU properties ###

Any available (installed) CUDA device can be chosen within Python for any image reconstruction or part of the
reconstruction pipeline.

Search paths for third-party software

Paths to tools for image registration, resampling, and conversion (DICOM -> NIfTI) can also be found in
resources.py:

# paths to apps and tools needed by NiftyPET
### start NiftyPET tools ###
PATHTOOLS = '/path/to/NiftyPET_tools/'
RESPATH = '/path/to/NiftyPET_tools/niftyreg/bin/reg_resample'
REGPATH = '/path/to/NiftyPET_tools/niftyreg/bin/reg_aladin'

(continues on next page)
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(continued from previous page)

DCM2NIIX = '/path/to/NiftyPET_tools/dcm2niix/bin/dcm2niix'
HMUDIR = '/path/to/mmr_hardware_mumaps'
### end NiftyPET tools ###

Note that the proprietary hardware 𝜇-maps (HMUDIR) are not distributed with this software, and have to be obtained
from the Siemens Biograph mMR scanner.

2.3. Post-installation checks 13
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CHAPTER 3

NiftyPET Example

This is a full demo of NiftyPET’s default OSEM (𝑛max = 14 subsets, span 11, Siemens Biograph mMR resolution), as
well as a custom, explicit MLEM incorporating RM (resolution modelling).

Mathematically:

𝜃(𝑘+1) =
𝜃(𝑘)∑︀

𝑛 H
𝑇X𝑇

𝑛A
𝑇N𝑇1

∘
∑︁
𝑛

H𝑇X𝑇
𝑛A

𝑇N𝑇 m

NAX𝑛H𝜃(𝑘) + r + s
,

• 𝑘 is iteration number

• 𝐻 applies a Gaussian PSF

• 𝑋𝑛 is the system matrix for subset 𝑛 (MLEM has just one subset)

• 𝑚, 𝑟, 𝑠 are measured, randoms, and scatter

• Author: Casper O. da Costa-Luis casper.dcl@{physics.org|ieee.org|kcl.ac.uk}

• Date: 2019-21

3.1 Imports

In addition to NiftyPET, this is recommended:

pip install brainweb # basic registration
pip install spm12 # MATLAB-based registration

15
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[1]: # imports & helper functions
from __future__ import print_function, division
%matplotlib notebook
from collections import OrderedDict
from glob import glob
from os import path
import functools
import logging
import os

if os.getenv("OMP_NUM_THREADS", None) != "1":
raise EnvironmentError("should run `export OMP_NUM_THREADS=1` before notebook

→˓launch")

from miutil.plot import apply_cmap, imscroll
from niftypet import nipet
from niftypet.nimpa import getnii
from scipy.ndimage.filters import gaussian_filter
from tqdm.auto import trange
import matplotlib.pyplot as plt
import numpy as np
import pydicom

logging.basicConfig(level=logging.INFO)
print(nipet.gpuinfo())
# get all the scanner parameters
mMRpars = nipet.get_mmrparams()
# conversion for Gaussian sigma/[voxel] to FWHM/[mm]
SIGMA2FWHMmm = (8 * np.log(2))**0.5 * np.array([mMRpars['Cnt']['SO_VX' + i] for i in
→˓'ZYX']) * 10

def div_nzer(x, y):
return np.divide(x, y, out=np.zeros_like(y), where=y!=0)

def trimVol(x):
return x[:, 100:-100, 100:-100]

def mapVol(vol, cmap=None, vmin=0, vmax=None):
msk = ~np.isnan(vol)
if vmin is None:

vmin = vol[msk].min()
if vmax is None:

vmax = vol[msk].max()
vol = (np.clip(vol, vmin, vmax) - vmin) / (vmax - vmin)
return apply_cmap(**{cmap: vol}) if cmap is not None else vol

def register_spm(ref_file, mov_file, opth):
"""
ref_file : e.g. recon['fpet']
mov_file : e.g. datain['T1nii']
"""
from spm12.regseg import coreg_spm, resample_spm
reg = coreg_spm(ref_file, mov_file, outpath=opth, save_arr=False, save_txt=False)
return getnii(resample_spm(ref_file, mov_file, reg['affine'], outpath=opth,

del_ref_uncmpr=True, del_flo_uncmpr=True, del_out_
→˓uncmpr=True))

(continues on next page)
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(continued from previous page)

def register_dipy(ref_file, mov_file, ROI=None):
"""
ref_file : e.g. recon['fpet']
mov_file : e.g. datain['T1nii']
"""
from brainweb import register
return register(getnii(mov_file), getnii(ref_file), ROI=ROI or ((0, None), (100, -

→˓100), (100, -100)))

[('GeForce GTX 1070 with Max-Q Design', 8119, 6, 1)]

3.2 Load & Process Raw Data

[2]: folderin = "amyloidPET_FBP_TP0"
folderout = "." # realtive to `{folderin}/niftyout`
itr = 7 # number of iterations (will be multiplied by 14 for MLEM)
fwhm = 2.5 # mm (for resolution modelling)
totCnt = None # bootstrap sample (e.g. `300e6`) counts

[3]: # datain
folderin = path.expanduser(folderin)

# automatically categorise the input data
datain = nipet.classify_input(folderin, mMRpars, recurse=-1)

# output path
opth = path.join(datain['corepath'], "niftyout")

datain

INFO:niftypet.nipet.mmraux:got LM interfile.
INFO:niftypet.nipet.mmraux:got CSA info.

[3]: {'corepath': 'amyloidPET_FBP_TP0',
'lm_dcm': 'amyloidPET_FBP_TP0/LM/17598013_1946_20150604155500.000000.dcm',
'lm_bf': 'amyloidPET_FBP_TP0/LM/17598013_1946_20150604155500.000000.bf',
'hmumap': 'amyloidPET_FBP_TP0/niftyout/mumap-hdw/hmumap.npz',
'sinos': 'amyloidPET_FBP_TP0/niftyout/sino/sinos_s11_frm-0-0.npz',
'nrm_dcm': 'amyloidPET_FBP_TP0/norm/17598013_1946_20150604082431.000000.dcm',
'nrm_bf': 'amyloidPET_FBP_TP0/norm/17598013_1946_20150604082431.000000.bf',
'pCT': 'amyloidPET_FBP_TP0/pCT/17598013_pCT_synth.nii.gz',
'T1lbl': 'amyloidPET_FBP_TP0/prcl/n4_bias_corrected_T1_NeuroMorph_Parcellation.nii.gz
→˓',
'T1nii': 'amyloidPET_FBP_TP0/T1w_N4/t1_S00113_17598013_N4bias_cut.nii.gz',
'T1N4': 'amyloidPET_FBP_TP0/T1w_N4/t1_S00113_17598013_N4bias_cut.nii.gz',
'mumapDCM': 'amyloidPET_FBP_TP0/umap',
'#mumapDCM': 192}

[4]: # hardware mu-map (bed, head/neck coils)
mu_h = nipet.hdw_mumap(datain, [1,2,4], mMRpars, outpath=opth, use_stored=True)

INFO:niftypet.nipet.img.mmrimg:loaded hardware mu-map from file: amyloidPET_FBP_TP0/
→˓niftyout/mumap-hdw/hmumap.npz
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[5]: # MR-based human mu-map

# UTE-based object mu-map aligned (need UTE sequence or T1 for pseudo-CT)
#mu_o = nipet.align_mumap(
# datain,
# scanner_params=mMRpars,
# outpath=opth,
# t0=0, t1=0, # when both times are 0, will use full data
# itr=2, # number of iterations used for recon to which registering MR/UTE
# petopt='ac',# what PET image to use (ac-just attenuation corrected)
# musrc='ute',# source of mu-map (ute/pct)
# ute_name='UTE2', # which UTE to use (UTE1/2 shorter/faster)
# verbose=True,
#)

# the same as above without any faff though (no alignment)
mu_o = nipet.obj_mumap(datain, mMRpars, outpath=opth, store=True)

INFO:niftypet.nipet.mmraux:gantry offset from DICOM:
[0.00147903 0.00593885 0.0170666 ]
INFO:niftypet.nipet.mmraux:table position origin from DICOM:
[-1179. 0. 0.]
INFO:niftypet.nipet.mmraux:got LM interfile.
INFO:niftypet.nipet.mmraux:got CSA info.
pixdim[0] (qfac) should be 1 (default) or -1; setting qfac to 1
INFO:nibabel.global:pixdim[0] (qfac) should be 1 (default) or -1; setting qfac to 1

[6]: # create histogram
mMRpars['Cnt']['BTP'] = 0
m = nipet.mmrhist(datain, mMRpars, outpath=opth, store=True, use_stored=True)
if totCnt:

mMRpars['Cnt']['BTP'] = 2 # enable parametric bootstrap
mMRpars['Cnt']['BTPRT'] = totCnt / m['psino'].sum() # ratio count level relative

→˓to the original
m = nipet.mmrhist(datain, mMRpars, outpath=path.join(opth, 'BTP', '%.3g' %

→˓totCnt), store=True)

3.2.1 Visualisations

[7]: try: # needs HW mu-maps
imscroll(mu_o['im'] + mu_h['im'], cmap='bone') # title=r"$\mu$-map"

except:
imscroll(mu_o['im'], cmap='bone')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[8]: # sinogram index (<127 for direct sinograms, >=127 for oblique sinograms)
imscroll([m['psino'], m['dsino']],

titles=["Prompt sinogram (%.3gM)" % (m['psino'].sum() / 1e6),
"Delayed sinogram (%.3gM)" % (m['dsino'].sum() / 1e6)],

cmap='inferno',
#colorbars=[1]*2,
fig=plt.figure(figsize=(9.5, 3.5), tight_layout=True, frameon=False));

axs = plt.gcf().axes

(continues on next page)

18 Chapter 3. NiftyPET Example



NiftyPET Documentation, Release 2.0.0

(continued from previous page)

axs[-1].set_xlabel("bins")
[i.set_ylabel("angles") for i in axs];

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.3 Reconstruction

3.3.1 OSEM

[9]: # built-in default: 14 subsets
fcomment = f"_fwhm-{fwhm}_recon"
outpath = path.join(opth, folderout)
recon = glob(

f"{outpath}/PET/single-frame/a_t-*-*sec_itr-{itr}{fcomment}.nii.gz"
)
if recon:

recon = {'fpet': recon[0], 'im': getnii(recon[0])}
else:

recon = nipet.mmrchain(
datain, mMRpars,
#frames=['timings', [3000, 3600]],
itr=itr,
#store_itr=range(itr),
histo=m,
mu_h=mu_h,
mu_o=mu_o,
psf=fwhm,
#recmod=1, # no scatter & rand
outpath=outpath,
fcomment=fcomment,
store_img=True)

Registration

[10]: # convert DCM to NII if required
if 'T1nii' not in datain:

!{mMRpars['Cnt']['DCM2NIIX']} -z y -f 'T1' {datain['T1DCM']}
extra = nipet.classify_input(datain['T1DCM'], mMRpars)
extra.pop('corepath')
datain.update(extra)

#filepaths = sorted(glob(path.join(datain['T1DCM'], '*.IMA')))
#arr = np.asanyarray([pydicom.dcmread(i).pixel_array for i in filepaths]).transpose(1,
→˓ 2, 0)

[11]: # SPM12
regout = f"{opth}/affine_ref-a_t-*sec_itr-21_fwhm-4.5_recon.nii.gz"
regim = getnii(regout) if path.exists(regout) else register_spm(recon['fpet'], datain[
→˓'T1nii'], opth)

(continues on next page)
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(continued from previous page)

# Simple Alternative: DIPY CoM
#regim = register_dipy(recon['fpet'], datain['T1nii'])

INFO:spm12.regseg:matrix M given in the form of Numpy array

Figures

[12]: vmax = np.percentile(recon['im'], 99.95)
imscroll({

"PET": mapVol(trimVol(recon['im']), 'magma', vmax=vmax),
"Smoothed": mapVol(gaussian_filter(trimVol(recon['im']), 4.5 / SIGMA2FWHMmm),

→˓'magma', vmax=vmax),
"$\\mu$ Map": mapVol(trimVol(mu_o['im']), 'bone'),
"T1": mapVol(trimVol(regim), 'Greys_r'),

},
fig=plt.figure(figsize=(9.5, 3.5), tight_layout=True, frameon=False),
);

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: # rgb => PET, mu_o, T1
def norMax(x, scale=1):

x = trimVol(x).transpose(2, 0, 1)[..., None]
return x * (scale / x[~np.isnan(x)].max())

imscroll([np.concatenate([norMax(recon['im']), norMax(mu_o['im'], 0.15), norMax(regim,
→˓ 0.75)], axis=-1)]);

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.3.2 MLEM

[14]: ## Attenuation, Normalisation & Sensitivity

A = nipet.frwd_prj(mu_h['im'] + mu_o['im'], mMRpars, attenuation=True)
N = nipet.mmrnorm.get_norm_sino(datain, mMRpars, m)
AN = A * N
sim = nipet.back_prj(AN, mMRpars)
msk = nipet.img.mmrimg.get_cylinder(mMRpars['Cnt'], rad=29., xo=0., yo=0., unival=1,
→˓gpu_dim=False) <= 0.9

## Randoms

r = nipet.randoms(m, mMRpars)[0]
print("Randoms: %.3g%%" % (r.sum() / m['psino'].sum() * 100))

## Scatter

# One OSEM iteration estimate (implicitly using voxel-driven scatter model)
eim = nipet.mmrchain(datain, mMRpars, mu_h=mu_h, mu_o=mu_o, histo=m, itr=1,
→˓outpath=opth)['im']

(continues on next page)
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(continued from previous page)

# Recalculate scatter
s = nipet.vsm(datain, (mu_h['im'], mu_o['im']), eim, mMRpars, m, r)
print("Scatter: %.3g%%" % (s.sum() / m['psino'].sum() * 100))

INFO:niftypet.nipet.img.auximg:using object mu-map from dictionary
INFO:niftypet.nipet.img.auximg:using hardware mu-map from dictionary
INFO:niftypet.nipet.img.pipe:using the provided mu-map the same way for all frames.
INFO:niftypet.nipet.img.pipe:dynamic frame times t0=0, t1=3601:
INFO:niftypet.nipet.img.pipe:------------------------------------------------------
using provided histogram
------------------------------------------------------
INFO:niftypet.nipet.prj.mmrrec:reconstruction in mode: 3

Randoms: 52.1%

INFO:niftypet.nipet.prj.mmrrec:------ OSEM (1) -------
INFO:niftypet.nipet.mmraux:got LM interfile.
INFO:niftypet.nipet.mmraux:got CSA info.

OSEM: 0%| | 0/1 [00:00<?, ?it/s]

INFO:niftypet.nipet.prj.mmrrec:recon time: 7.3
INFO:niftypet.nipet.prj.mmrrec:applying decay correction of: 1.2014266465888763
INFO:niftypet.nipet.prj.mmrrec:applying quantification factor: 5570.410609255673 to
→˓the whole image
INFO:niftypet.nipet.prj.mmrrec:for the frame duration of: 3601

Scatter: 13.7%

[15]: imscroll(OrderedDict([("Prompts", m['psino']), ("Delayed", m['dsino']), ("Attenuation
→˓", A)]),

cmap='inferno', fig=plt.figure(figsize=(9.5, 3), tight_layout=True,
→˓frameon=False));
imscroll(OrderedDict([("Scatter", s), ("Randoms", r), ("Normalisation", N)]),

cmap='inferno', fig=plt.figure(figsize=(9.5, 3), tight_layout=True,
→˓frameon=False));

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[16]: ## MLEM with RM

psf = functools.partial(gaussian_filter, sigma=fwhm / SIGMA2FWHMmm)
sim_inv = div_nzer(1, psf(sim))
sim_inv[msk] = 0
rs_AN = div_nzer(r + s, AN)
recon_mlem = [np.ones_like(sim)]
for k in trange(itr * 14, desc="MLEM"):

fprj = nipet.frwd_prj(psf(recon_mlem[-1]), mMRpars) + rs_AN
recon_mlem.append(recon_mlem[-1] * sim_inv * psf(nipet.back_prj(div_nzer(m['psino

→˓'], fprj), mMRpars)))

MLEM: 0%| | 0/98 [00:00<?, ?it/s]
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[17]: # central slice across iterations
imscroll(

np.asanyarray([trimVol(i) for i in recon_mlem[1::14]]),
titles=["iter %d" % i for i in range(1, len(recon_mlem), 14)],
cmap='magma', fig=plt.figure(figsize=(9.5, 2), tight_layout=True, frameon=False));

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>
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CHAPTER 4

Accessing and querying GPU devices

IPython is an interactive Python prompt, particularly useful for PET/MR imaging. Start IPython by issuing ipython
in the terminal to obtain the following:

Python 2.7.15 |Anaconda custom (64-bit)| (default, May 1 2018, 23:32:55)
Type "copyright", "credits" or "license" for more information.

IPython 5.7.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]:

Note: At this stage Python 2.7 is supported. Support for Python 3 is coming soon.

Import nimpa package from Python NiftyPET namespace and run the :

from niftypet import nimpa
nimpa.gpuinfo()

which for two NVIDIA GPU devices used for this documentation (TITAN Xp and Quadro K4200) will produce:

In [1]: from niftypet import nimpa
...: nimpa.gpuinfo()
...:

Out[1]: [('TITAN X (Pascal)', 12788L, 6L, 1L), ('Quadro K4200', 4231L, 3L, 0L)]

In [2]:

Please note that only the first device is supported, i.e., the compute capability is >=3.5:
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In [3]: nimpa.gpuinfo()[0][2:]
Out[3]: (6L, 1L)

The same fuction is available in nipet, i.e.:

from niftypet import nipet
nipet.gpuinfo()

It’s also possible to get extended information about the installed GPU devices by running either

nipet.gpuinfo(extended=True)

or

nimpa.gpuinfo(extended=True)

For the above GPU devices, the following will be obtained:

In [4]: nimpa.gpuinfo(extended=True)
i> there are 2 GPU devices.

----------------------------------------
CUDA device: TITAN X (Pascal), ID = 0
----------------------------------------
i> total memory [MB]:12788.50
i> shared memory/block [kB]: 49.15
i> registers (32bit)/thread block: 65536
i> warp size: 32
i> compute capability: 6.1
i> clock rate [MHz]: 1531.00
i> ECC enabled? 0
i> max # threads/block: 1024

i> Memory available: 12788.50[MB]
Used: 504.37[MB]
Free:12284.13[MB]

----------------------------------------
CUDA device: Quadro K4200, ID = 1
----------------------------------------
i> total memory [MB]:4231.99
i> shared memory/block [kB]: 49.15
i> registers (32bit)/thread block: 65536
i> warp size: 32
i> compute capability: 3.0
i> clock rate [MHz]: 784.00
i> ECC enabled? 0
i> max # threads/block: 1024

i> Memory available: 4231.99[MB]
Used:1117.06[MB]
Free:3114.93[MB]

[('TITAN X (Pascal)', 12788L, 6L, 1L), ('Quadro K4200', 4231L, 3L, 0L)]
Out[4]: [('TITAN X (Pascal)', 12788L, 6L, 1L), ('Quadro K4200', 4231L, 3L, 0L)]
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CHAPTER 5

DICOM anonymisation

DICOM data anonymisation or pseudonymisation is a process of removing sensitive personal information from DI-
COM attributes . This ensures compliance with the EU’s General Data Protection Regulation (GDPR); so that the
people who are imaged remain anonymous when their image data is distributed for wider scientific or clinical re-
search.

The difference between anonymisation and pseudonymisation is that the former does not allow re-identification, while
the latter does. In pseudonymisation the personally identifiable information is replaced with artificial identifiers, which
must be kept separately and safely. Importantly, however, it has to be recognised that with current machine learning
techniques, absolute protection of digital imaging data is almost impossible. For example, in an MR study of the head,
effective anonymisation would also need to involve irreversible image deformation of the face [7].

5.1 Anonymisation in NiftyPET

The anonymisation can be achieved using function dcmanonym in sub-package nimpa through the use of Pydicom.
For example, sensitive information, such as the patient’s name, date of birth, etc., can be checked and displayed by:

from niftypet import nimpa
dcmpath = '/path/to/DICOM-file'
nimpa.dcmanonym(dcmpath, displayonly=True)

If it needs anonymisation or pseudonymisation, the sensitive information, such as the patient’s name, date of birth
(dob) and physician’s name, has to be replaced by the user-defined strings, i.e.:

nimpa.dcmanonym(dcmpath,
patient='Anonymous',
physician='DR. Anonymous',
dob='19000101',
verbose=True)

The argument dcmpath in the above call, can be not only the path (a Python string) to a single DICOM file, but also
it can be a Python list of DICOM file paths, the path to a folder containing DICOM files, or a dictionary datain
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containing all the data (including raw data) needed for a standalone image reconstruction. For example, assuming that
the scanner (here the Biograph mMR) is initialised and the path to raw data is provided, i.e.:

from niftypet import nipet
from niftypet import nimpa

# get all the scanner parameters
mMRparams = nipet.get_mmrparams()
folderin = '/path/to/raw-data'

# automatically categorise the input data
datain = nipet.classify_input(folderin, mMRparams)

then all the DICOM data required for reconstruction can be anonymised simply by:

nimpa.dcmanonym(datain,
patient='RandomID',
physician='Dr. Hopefully Nice',
dob='19800101',
verbose=True)

Please note, that the anonymisation of the Biograph mMR data goes somewhat deeper than just modifying the DICOM
attributes—it also extracts the specific CSA headers and searches them for the patient’s name.
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CHAPTER 6

List-mode processing and motion detection

The list-mode (LM) data is usually of large size in the order of GB. In NiftyPET, the LM data is hidden within
image reconstruction function (see _basic-recon-section) and processed automatically. However, the LM data can
be processed separately to obtain histogrammed data (sinograms) as well as other statistics of the PET acquisition,
including the head curves and motion detection.

After the following initialisation and input data specification (an example of amyloid brain acquisition is provided at
Raw brain PET data [1]):

import sys, os, logging
from niftypet import nipet

# control the logging output
logging.basicConfig(level=logging.INFO)

# get all the scanner parameters (mMR)
mMRpars = nipet.get_mmrparams()

# Enter the path to the input data folder
folderin = '/path/to/input/data/folder/'

# automatically categorise the input data
datain = nipet.classify_input(folderin, mMRpars)

the LM data processing can be performed by running the following line:

hst = nipet.mmrhist(datain, mMRpars)

The direct prompt and delayed sinograms can be viewed by choosing the sinogram index below 127 and from 127 up
to 836 for oblique sinograms, i.e.:

# sinogram index (<127 for direct sinograms, >=127 for oblique sinograms)
si = 60

# prompt sinogram

(continues on next page)
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(continued from previous page)

matshow(hst['psino'][si,:,:], cmap='inferno')
colorbar()
xlabel('bins')
ylabel('angles')

# delayed sinogram
matshow(hst['dsino'][si,:,:], cmap='inferno')
colorbar()
xlabel('bins')
ylabel('angles')

Fig. 6.1: Direct prompt sinogram for 60 minute amyloid PET acquisition.

The head-curve, which is the total number of counts detected per second across the acquisition time, for the prompt
and delayed data can be plotted as follows:

plot(hst['phc'], label='prompt')
plot(hst['dhc'], label='delayed')
legend()
grid('on')
xlabel('time')
ylabel('counts')
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Fig. 6.2: Direct delayed sinogram for 60 minute PET acquisition.
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Fig. 6.3: Head curve for prompt and delayed events for the 60-minute acquisition.
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6.1 Motion detection

In order to get a general idea about the potential motion during the acquisition, the LM processing includes the centre
of mass of the radiodistribution along the axial direction as one of the main directions of motion. This centre of mass
information can be plotted as follows for the available dataset (Raw brain PET data):

plot(hst['cmass'])
grid('on')
xlabel('time')
ylabel('Centre of mas of radiodistribution')

which for the provided one-hour amyloid acquisition will produce:

Fig. 6.4: The centre of mass of the radiodistribution for the 60-minute amyloid PET acquisition. Very little motion is
observer–the smooth, exponentially varying curve is due to the tracer kinetics.

For another amyloid acquisition with motion, the curve can look like this:
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Fig. 6.5: The centre of mass of the radiodistribution for another 60-minute amyloid PET acquisition in which motion
occurred. The motion is observer by the ‘breaks’, in particular seen around 1760 second (the 29th minute) of the curve
on top of the smooth exponential due to the tracer pharmacokinetics.
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CHAPTER 7

Basic PET image reconstruction

For basic Siemens Biograph mMR image reconstruction, NiftyPET requires:

(1) PET list-mode data;

(2) component-based normalisation file(s);

(3) the 𝜇-map image (the linear attenuation map as a 3D image).

An example of downloadable raw PET data of amyloid brain scan is provided in Raw brain PET data [1].

7.1 Initialisation

Prior to dealing with the raw input data, required packages need to be imported and the Siemens Biograph mMR
scanner constants and parameters (transaxial and axial lookup tables, LUTs) have to be loaded:

import sys, os, logging
import numpy as np

# NiftyPET image reconstruction package (nipet)
from niftypet import nipet
# NiftyPET image manipulation and analysis (nimpa)
from niftypet import nimpa

# control the logging output
logging.basicConfig(level=logging.INFO)

# get all the scanner parameters
mMRpars = nipet.get_mmrparams()
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7.2 Sorting and classification of input data

All the part of the input data is aimed to be automatically recognised and sorted in Python dictionary. This can be
obtained by providing a path to the folder containing the unzipped file of the freely provided raw PET data in Raw
brain PET data. The data is then automatically explored and sorted in the output dictionary datain:

# Enter the path to the input data folder
folderin = '/path/to/input/data/folder/'

# automatically categorise the input data
datain = nipet.classify_input(folderin, mMRpars)

The output of datain for the above PET data should be as follows:

In [5]: datain
Out[5]:
{'#mumapDCM': 192,
'corepath': '/data/amyloid_brain',
'lm_bf': '/data/amyloid_brain/LM/17598013_1946_20150604155500.000000.bf',
'lm_dcm': '/data/amyloid_brain/LM/17598013_1946_20150604155500.000000.dcm',
'mumapDCM': '/data/amyloid_brain/umap',
'nrm_bf': '/data/amyloid_brain/norm/17598013_1946_20150604082431.000000.bf',
'nrm_dcm': '/data/amyloid_brain/norm/17598013_1946_20150604082431.000000.dcm'}

The parts of the recognised and categorised input data include:

Type Path
corepath the core path of the input folder
#mumapDCM the number of DICOM files for the 𝜇-map, usually 192
mumapDCM path to the MR-based DICOM 𝜇-map
lm_bf path to the list-mode binary file
lm_dcm the path to the DICOM header of the list-mode binary file
nrm_bf path to the binary file for component based normalisation
nrm_dcm path to the DICOM header for the normalisation

Note: The raw mMR PET data can also be represented by a single *.ima DICOM file instead of the *.dcm and
*.bf pairs for list-mode and normalisation data, which will be reflected in datain.

7.3 Specifying output folder

The path to the output folder where the products of NiftyPET go, as well as the verbose mode can be specified as
follows:

# output path
opth = os.path.join( datain['corepath'], 'output')

# switch on verbose mode
logging.getLogger().setLevel(logging.DEBUG)

With the setting as above, the output folder output will be created within the input data folder.
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7.4 Obtaining the hardware and object 𝜇-maps

Since MR cannot image the scanner hardware, i.e., the patient table, head and neck coils, etc., the high resolution
CT-based mu-maps are provided by the scanner manufacturer. These then have to be appropriately resampled to the
table and coils position as used in any given imaging setting. The hardware and object 𝜇-maps are obtained as follow:

# obtain the hardware mu-map (the bed and the head&neck coil)
muhdct = nipet.hdw_mumap(datain, [1,2,4], mMRpars, outpath=opth, use_stored=True)

# obtain the MR-based human mu-map
muodct = nipet.obj_mumap(datain, mMRpars, outpath=opth, store=True)

The argument [1,2,4] for Obtaining the hardware 𝜇-map correspond to the hardware bits used in imaging, i.e.:

(1) Head and neck lower coil

(2) Head and neck upper coil

(3) Spine coil

(4) Table

Currently, the different parts have to be entered manually (they are not automatically recognised which are in use).

The option use_stored=True allows to reuse the already created hardware 𝜇-map, without recalculating it (the
resampling can take more than a minute).

Both output dictionaries muhdct and muodct will contain images among other parameters, such as the image affine
matrix and image file paths.

In order to check if both 𝜇-maps were properly loaded, the maps can be plotted together transaxially by choosing the
axial index iz along the 𝑧-axis, as follows:

# axial index
iz = 60

# plot image with a colour bar
matshow(muhdct['im'][iz,:,:] + muodct['im'][iz,:,:], cmap='bone')
colorbar()

This will produce the following image:

The sagittal image can be generated in a similar way, but choosing the slice along the 𝑥-axis, i.e.:

# axial index
ix = 170

# plot image with a colour bar
matshow(muhdct['im'][:,:,ix] + muodct['im'][:,:,ix], cmap='bone')
colorbar()

7.5 Static image reconstruction

The code below provides full image reconstruction for the last 10 minutes of the acquisition to get an estimate of the
amyloid load through the ratio image (SUVr).
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Fig. 7.1: Composite of the hardware and object 𝜇-maps. Observed can be the human head between the upper and
lower head&neck coils, and the patient table below.

Fig. 7.2: Sagittal view of the composite of the hardware and object 𝜇-maps. Observed can be the human head between
the upper and lower head&neck coils, and the patient table on the right of the head.
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recon = nipet.mmrchain(
datain, mMRpars,
frames = ['timings', [3000, 3600]],
mu_h = muhdct,
mu_o = muodct,
itr=4,
fwhm=0.0,
outpath = opth,
fcomment = 'niftypet-recon',
store_img = True)

The input arguments are as follows:

argument description
datain input data (list-mode, normalisation and the 𝜇-map)
mMRpars scanner parameters (scanner constants and LUTs)
frames definitions of time frame(s);
mu_h hardware 𝜇-map
mu_o object 𝜇-map
itr number of iterations of OSEM (14 subsets).
fwhm full width at half-maximum for the image post-smoothing
outpath path to the output folder
fcomment prefix for all the generated output files
store_img store images (yes/no)

• the argument timings indicates that the start/stop times in the following sublist is user-specified and can be
done for multiple time frames (see section Dynamic time frame definitions).

The reconstructed image can be viewed as follow:

matshow(recon['im'][60,:,:], cmap='magma')
colorbar()
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Fig. 7.3: The transaxial slice of the amyloid PET reconstructed image. Voxel intensities are in Bq.
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Dynamic image reconstruction

Dynamic imaging involves reconstruction of a series of static images across the whole duration of the acquisition time
(usually not less than one hour) by dividing the time into usually non-overlapping dynamic time frames. It is assumed
that the average tracer concentration during any frame is representative of the whole frame and any concentration
changes within the frame are considered minor relative to the changes across the whole acquisition.

Dynamic reconstruction of the Biograph mMR data uses the same function, nipet.mmrchain as shown in sec-
tion Static image reconstruction for the mMR chain processing. In addition to the basic parameters used, additional
parameters need to be defined for dynamic reconstruction.

8.1 Dynamic time frame definitions

The extra parameters include the definition of the dynamic time frames. For example, for identical acquisitions, as the
provided amyloid PET data (see Raw brain PET data), the one-hour dynamic PET data was divided into 31 dynamic
frames in [8], i.e.: 4 × 15s, 8 × 30s, 9 × 60s, 2 × 180s, 8 × 300s, which makes the total of 3600s (one hour).

These definitions can then be represented using Python lists in three ways:

1. the simplest way—a 1-D list, with elements representing the consecutive frame durations in seconds, i.e., for
the above definitions it will be:

frmdef_1D = [
15, 15, 15, 15,
30, 30, 30, 30,
30, 30, 30, 30,
60, 60, 60,
60, 60, 60,
60, 60, 60,
180, 180,
300, 300, 300, 300,
300, 300, 300, 300
]
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2. a more elegant representation is by using a 2-D Python list, starting with a string ‘def’, followed by two-element
sub-lists with the repetition number and the duration in seconds [s], respectively, i.e.:

frmdef_2D = ['def', [4, 15], [8, 30], [9, 60], [2, 180], [8, 300]]

3. and the last most flexible representation is by using again a 2-D list, starting with a string ‘timings’ or ‘fluid’,
followed by two-element sub-lists with the start time, 𝑡0 and the end time 𝑡1 for each frame, i.e.:

frmdef_t = [
'timings',
[0, 15],
[15, 30],
[30, 45],
[45, 60],
[60, 90],
[90, 120],
[120, 150],
[150, 180],
[180, 210],
[210, 240],
[240, 270],
[270, 300],
[300, 360],
[360, 420],
[420, 480],
[480, 540],
[540, 600],
[600, 660],
[660, 720],
[720, 780],
[780, 840],
[840, 1020],
[1020, 1200],
[1200, 1500],
[1500, 1800],
[1800, 2100],
[2100, 2400],
[2400, 2700],
[2700, 3000],
[3000, 3300],
[3300, 3600]
]

The last representation is the most flexible as it allows the time frames to be defined independent of each other. This is
especially useful when defining overlapping time frames or frames which are not necessarily consecutive time-wise.

All the definitions can be summarised in one dictionary using the above frmdef_1D or frmdef_2D definitions,
i.e.:

# import the NiftyPET sub-package if it is not loaded yet
from niftypet import nipet

# frame dictionary
frmdct = nipet.dynamic_timings(frmdef_1D)

or
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# frame dictionary
frmdct = nipet.dynamic_timings(frmdef_2D)

resulting in:

In [1]: frmdct
Out[1]:
{'frames': array([ 15, 15, 15, 15, 30, 30, 30, 30, 30, 30, 30, 30,
→˓ 60,

60, 60, 60, 60, 60, 60, 60, 60, 180, 180, 300, 300, 300,
300, 300, 300, 300, 300], dtype=uint16),

'timings': ['timings',
[0, 15],
[15, 30],
[30, 45],
[45, 60],
[60, 90],
[90, 120],
[120, 150],
[150, 180],
[180, 210],
[210, 240],
[240, 270],
[270, 300],
[300, 360],
[360, 420],
[420, 480],
[480, 540],
[540, 600],
[600, 660],
[660, 720],
[720, 780],
[780, 840],
[840, 1020],
[1020, 1200],
[1200, 1500],
[1500, 1800],
[1800, 2100],
[2100, 2400],
[2400, 2700],
[2700, 3000],
[3000, 3300],
[3300, 3600]],

'total': 3600}

Please note, that internally, consecutive dynamic frames are represented as an array of unsigned 16-bit integers.

8.2 Dynamic reconstruction

The dynamic reconstruction can be invoked after the following setting-up and pre-processing:

import os
import logging
from niftypet import nipet
from niftypet import nimpa

(continues on next page)
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(continued from previous page)

logging.basicConfig(level=logging.INFO)
# dynamic frames for kinetic analysis
frmdef = ['def', [4, 15], [8, 30], [9, 60], [2, 180], [8, 300]]

# get all the constants and LUTs
mMRpars = nipet.get_mmrparams()

#------------------------------------------------------
# GET THE INPUT
folderin = '/path/to/amyloid_brain'

# recognise the input data as much as possible
datain = nipet.classify_input(folderin, mMRpars)
#------------------------------------------------------

# switch on verbose mode
logging.getLogger().setLevel(logging.DEBUG)

# output path
opth = os.path.join( datain['corepath'], 'output')

#------------------------------------------------------
# GET THE MU-MAPS
muhdct = nipet.hdw_mumap(datain, [1,2,4], mMRpars, outpath=opth, use_
→˓stored=True)

# UTE-based object mu-map
muodct = nipet.obj_mumap(datain, mMRpars, outpath=opth, store=True)
#-----------------------------------------------------

Since multiple image frames are reconstructed, the mmrchain function apart from 4-D NIfTI image storing, also
enables to store intermediate 3-D NIfTI images for each dynamic frame using the option store_img_intrmd =
True:

recon = nipet.mmrchain(
datain,
mMRpars,
frames = frmdef,
mu_h = muhdct,
mu_o = muodct,
itr = 4,
fwhm = 0.,
outpath = opth,
fcomment = '_dyn',
store_img = True,
store_img_intrmd = True)

The path to the reconstructed 4-D image can be accessed through the output dictionary, recon:

In [2]: recon['im'].shape
Out[2]: (31, 127, 344, 344)

or the stored 4-D NIfTI image in:

In [19]: recon['fpet']
Out[19]: '/path/to/NIfTI-output'
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8.3 Time offset due to injection delay

In most cases the injection is performed with some delay relative to the time of starting the scan. Also, the first
recorded counts will be random events, as the activity is detected from outside the field of view (FOV). The offset
caused by the injection delay and random events, can be separated and omitted by running first list mode processing
with histogramming, followed by estimating the time offset and accounting for it in the timings of the frames:

# histogram the list mode data (in <datain> dictionary) using scanner
→˓parameters (<mMRpars>)
hst = nipet.mmrhist(datain, mMRpars)

# offset for the time from which meaningful events are detected
toff = nipet.lm.get_time_offset(hst)

# dynamic frame timings
frm_timings = nipet.lm.dynamic_timings(frmdef, offset=toff)

The reconstruction is then performed with the augmented timings in the following way:

recon = nipet.mmrchain(
datain,
mMRpars,
frames = frm_timings,
mu_h = muhdct,
mu_o = muodct,
itr = 4,
fwhm = 0.,
outpath = opth,
fcomment = '_dyn',
store_img = True,
store_img_intrmd = True)

Note, that the reconstruction pipeline accepts different definitions of the dynamic frames as shown above.

8.4 Visualisation of dynamic frame timings

The time frames can be visualised with one line of code:

# draw the frame timings over the head-curve
nipet.lm.draw_frames(hst, frm_timings)

which plots the timings of dynamic frames over the prompts, delayeds and the difference between the two as shown
below in Fig. 8.1.

In order to zoom in to a particular time interval, e.g., from 0s to 150s, and visualise clearly the time offset, the following
line of code can be used:

# draw the frame timings over the head-curve, with time limits of tlim
nipet.lm.draw_frames(hst, frm_timings, tlim = [0, 150])

resulting in the following plot (Fig. 8.2):
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Fig. 8.1: The dynamic frame intervals are marked with dashed horizontal black curves on top of the head-curve
(prompts and delayeds per second).

44 Chapter 8. Dynamic image reconstruction



NiftyPET Documentation, Release 2.0.0

Fig. 8.2: The dynamic frame intervals are marked with dashed horizontal black curves on top of the part of head-curve
(prompts and delayeds per second). Note that almost 30s of list mode data from the beginning is discarded.
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CHAPTER 9

Corrections for quantitative PET

9.1 Decay correction

During any PET acquisition, the radio-tracer activity, 𝐴𝑡, decays according to:

𝐴𝑡 = 𝐴0𝑒
−𝜆𝑡,

where 𝐴0 is the reference activity at time 𝑡0. The decay constant 𝜆 is defined as:

𝜆 =
ln(2)

𝑇1/2
,

where 𝑇1/2 is the half-life of the radionuclide.

Likewise, for activity 𝐴𝑡 at time 𝑡, the original activity is simply:

𝐴0 = 𝐴𝑡𝑒
𝜆𝑡.

9.1.1 Real PET acquisition example

Consider the one-hour dynamic amyloid PET data provided in Raw brain PET data. The injected radioactivity at
𝑡0 = 0 was 𝐴0 = 409 MBq, and since the used amyloid tracer is 18F-based, the half life for the radioisotope is
𝑇1/2 = 6586.272 s (≈ 110 min), and hence 𝜆 = 1.052 × 10−4 s-1. The radioactive decay from the injected activity is
shown in black in Fig. 9.1.

Consider also a time frame of the last 10 minutes of acquisition, from 𝑡1 = 3000 to 𝑡2 = 3500 seconds, as shown in
Fig. 9.1. In order to correct for the decay not only within the time frame, but also relative to the beginning of the scan
at injection, the measurable activity of the time frame needs to be compared to the ideal case of no radioactive decay.

In this example, the ideal radioactivity would remain constant at 𝐴0 = 409 MBq, as is shown by the horizontal dashed
line. Therefore, for the considered duration of the time frame, the measurable ideal activity would be 𝐴0∆𝑡.
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Fig. 9.1: Radioactive decay, shown in black, from the injected activity of 𝐴0 = 409 MBq. The recorded prompt events
are shown in blue. The decay correction calculations are shown for a frame of the last 10 minutes of acquisition. Please
note that the injected activity is significantly greater than the recorded events (coincidences) as the field of view of the
scanner allows only part of the body to be scanned. Note also the significantly different distribution of the detected
coincidences, which is decaying considerably faster than the injected activity, and which is due to tracer clearance
from the participant’s head, dead-time and other factors.
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In the real case scenario, however, the activity decays, and the measurable activity with the time frame is:∫︁ 𝑡2

𝑡1

𝐴0𝑒
−𝜆𝑡d𝑡 = − 1

𝜆𝑒
−𝜆𝑡

⃒⃒⃒𝑡2
𝑡1

=
𝐴0

𝜆

(︀
𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2

)︀
The decay correction, 𝐶𝑡0

decay, for the time frame relative to the beginning of scan (injection), 𝑡0 = 0, is simply the ratio
of the two activities, i.e., the ideal one to the decaying, ∆𝑡, of the frame:

𝐶𝑡0
decay =

𝐴0∆𝑡

𝐴0(𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2)/𝜆

=
𝜆∆𝑡

𝑒−𝜆𝑡1(1 − 𝑒−𝜆Δ𝑡)
,

and finally obtaining:

𝐶𝑡0
decay =

𝜆𝑒𝜆𝑡1∆𝑡

1 − 𝑒−𝜆Δ𝑡
.

See also http://www.turkupetcentre.net/petanalysis/decay.html.

9.1.2 Controlling decay correction in NiftyPET

The decay correction is by default applied automatically with the reference to the beginning of scan as recorded in the
list-mode data. It does not need to be the injection time, i.e., in case of static scans, when the patient waits a time post-
injection before is scanned. In NiftyPET decay correction is controlled by the dictionary entry Cnt['DCYCRR'].
For example, if the scanner is initialised as follows:

# NiftyPET image reconstruction package (nipet)
from niftypet import nipet
# NiftyPET image manipulation and analysis (nimpa)
from niftypet import nimpa

# get all the Biograph mMR parameters
mMRpars = nipet.get_mmrparams()

Then the default decay correction can be switched off, if the following line:

mMRpars['Cnt']['DCYCRR'] = False,

is placed before image reconstruction. By default mMRpars['Cnt']['DCYCRR'] = True.
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CHAPTER 10

Raw brain PET data

Downloadable raw PET data of a single brain amyloid scan (18F-florbetapir), with all the necessary input components
for independent image reconstruction, can be obtained from the research data repository Zenodo (click the DOI link
to download the data) [1]:

The downloaded zip file contains a full dynamic list-mode PET data acquired on a Siemens Biograph mMR for 60
minutes, using amyloid tracer 18F-florbetapir, provided by Avid Radiopharmaceuticals, Inc., a wholly owned sub-
sidiary of Lilly. The file also includes normalisation files and the 𝜇-map based on MR Ultrashort TE (UTE) sequence
[2][3], all three parts needed for an independent image reconstruction using NiftyPET.

10.1 Citing the data

When using this data set for research or publications, please cite the following two publications: [1][4]:

• Markiewicz, P. J., Cash, D., & Schott, J. M. (2018, November 5). Single amyloid PET scan on the
Siemens Biograph mMR. London: Zenodo. https://doi.org/10.5281/ZENODO.1472951

• Lane, C. A., Parker, T. D., Cash, D. M., Macpherson, K., Donnachie, E., Murray-Smith, H., . . .
Schott, J. M. (2017). Study protocol: Insight 46 - a neuroscience sub-study of the MRC Na-
tional Survey of Health and Development. BMC Neurology, 17(1), 75. https://doi.org/10.1186/
s12883-017-0846-x

If the data is reconstructed and/or analysed using NiftyPET, additionally please cite [5]:

• Markiewicz, P. J., Ehrhardt, M. J., Erlandsson, K., Noonan, P. J., Barnes, A., Schott, J. M.,
. . . Ourselin, S. (2018). NiftyPET: a High-throughput Software Platform for High Quantitative
Accuracy and Precision PET Imaging and Analysis. Neuroinformatics, 16(1), 95–115. https:
//doi.org/10.1007/s12021-017-9352-y
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